
Modernizing Fortran 77 Legacy Codes
Viktor K. Decyk'" and Charles D. Norton'

'University of California at Los Angeles
Department of Physics and Astronomy

Los Angeles, CA 90095-1547

'National Aeronautics and Space Administration
Jet Propulsion Laboratory, California Institute of Technologv

MS 168-522,4800 Oak Grove Drive, Pasadena, CA 91 109-8099

Phone: 310-206-0371, Fax: 310-825-4057, E-mail: decyk@physics.ucla.edu

Over the course of 30 years, the scientific community has developed a large legacy of scientific
programs, written in early versions of Fortran, which have a great deal of intellectual and commercial
value. These codes have been carefully validated and often give excellent performance, even on
modern computers. The early versions of Fortran (primarily Fortran 77) are simple languages useful
at a time when the complexity of computing projects was limited; In fact, Fortran codes continue to
be written and used, because compilers are very mature and highly optimized for numerical
calculations. Furthermore, many scientific computational projects are relatively small (often less than
10,000 lines, rarely over 100,000 lines), and generally there is only one author involved.

Nevertheless, as computational power has increased, the ambitions of computational scientists have
also increased, and there is a desire to model systems too complex to be written by a single author.
For such projects, the early versions of Fortran are inadequate. Modern programming languages have
evolved which have much better support for complex programming projects, among them object-
oriented languages and Fortran 90. Should one abandon these legacy codes and rewrite everything in
C++, or can we somehow continue to use the legacy inside a more modern structure?

Our approach is to build a modern superstructure around the older legacy code rather than a complete
rewrite. We have developed a step-by-step process that allows software to be modernized, while also
improving its quality. The application remains in, productive use during the entire process. As much
as possible, we do not modify the original subroutines, but 'rather incorporate the modern features in
interface (wrapper) libraries. Our methodology is based on Fortran 90/95, because it has the modern
features we desire, while still maintaining backwarq:',compatibility. We make use of Fortran 90
language features such as modules, derived types, and dynamic array objects. Embedding the older
code inside the interface libraries encapsulates the implementation details of the legacy code, while
adding dynamic features and additional safety checks. This also enables multiple authors to work on
pieces of the code without interfering with one another qd, better reflects the problem domain. The
new code can evolve toward an object-oriented design, ifthat desired. Once the new superstructure
works correctly, there is always the option of replacing individual pieces of the legacy code.

In our presentation, we will describe our methodology and demonstrate its success for plasma
particle-in-cell codes for Tokamak modeling as well as, for an optical modeling code important to
NASA's Next Generation Space Telescope Project and Space Interferometry Missions.

S ! ; , .~ _ _ I

References

1, Decyk, V. K., Norton, C. D., and Szymanski, B. K. How to support inheritance and run-time polymorphism

2. Decyk, V. K., Norton, C. D., and Szymanski, B. K. How to Express C++ Concepts in Fortran 90. Scientific
in Fortran 90. Computer Physics Communications, 115:9-17, December 1998.

Programming, 6(4):363-390, Winter 1997.10s Press.

Acknowledgment: Work supported by NASA, NSF,.and IDOE.,
. . : . 3 .

I ,

mailto:decyk@physics.ucla.edu

